MLOps

How To Design And Build Machine Learning Systems For Reasonable Scale

Using machine learning in production requires a sophisticated set of cooperating technologies. A majority of resources that are available for understanding how to design and operate these platforms are focused on either simple examples that don’t scale, or over-engineered technologies designed for the massive scale of big tech companies. In this episode Jacopo Tagliabue shares his vision for “ML at reasonable scale” and how you can adopt these patterns for building your own platforms.

Read More

Accelerate Development And Delivery Of Your Machine Learning Projects With A Comprehensive Feature Platform

In order for a machine learning model to build connections and context across the data that is fed into it the raw data needs to be engineered into semantic features. This is a process that can be tedious and full of toil, requiring constant upkeep and often leading to rework across projects and teams. In order to reduce the amount of wasted effort and speed up experimentation and training iterations a new generation of services are being developed. Tecton first built a feature store to serve as a central repository of engineered features and keep them up to date for training and inference. Since then they have expanded the set of tools and services to be a full-fledged feature platform. In this episode Kevin Stumpf explains the different capabilities and activities related to features that are necessary to maintain velocity in your machine learning projects.

Read More

Stop Feeding Garbage Data To Your ML Models, Clean It Up With Galileo

Machine learning is a force multiplier that can generate an outsized impact on your organization. Unfortunately, if you are feeding your ML model garbage data, then you will get orders of magnitude more garbage out of it. The team behind Galileo experienced that pain for themselves and have set out to make data management and cleaning for machine learning a first class concern in your workflow. In this episode Vikram Chatterji shares the story of how Galileo got started and how you can use their platform to fix your ML data so that you can get back to the fun parts.

Read More

Wrap Your Model In A Full Stack Application In An Afternoon With Baseten

Building an ML model is getting easier than ever, but it is still a challenge to get that model in front of the people that you built it for. Baseten is a platform that helps you quickly generate a full stack application powered by your model. You can easily create a web interface and APIs powered by the model you created, or a pre-trained model from their library. In this episode Tuhin Srivastava, co-founder of Basten, explains how the platform empowers data scientists and ML engineers to get their work in production without having to negotiate for help from their application development colleagues.

Read More